vector ultrametric spaces and a fixed point theorem for correspondences
نویسندگان
چکیده
in this paper, vector ultrametric spaces are introduced and a fixed point theorem is given forcorrespondences. our main result generalizes a known theorem in ordinary ultrametric spaces.
منابع مشابه
Vector ultrametric spaces and a fixed point theorem for correspondences
In this paper, vector ultrametric spaces are introduced and a fixed point theorem is given for correspondences. Our main result generalizes a known theorem in ordinary ultrametric spaces.
متن کاملA Fixed Point Theorem for Correspondences on Cone Metric Spaces
In this paper, we prove that if f is a contractive closed-valued correspondence on a cone metric space (X, d) and there is a contractive orbit {xn} for f at x0 ∈ X such that both {xni} and {xni+1} converge for some subsequence {xni} of {xn}, then f has a fixed point, which generalizes a fixed point theorem for contractive closed-valued correspondences from metric spaces to cone metric spaces.
متن کاملTransversal spaces and common fixed point Theorem
In this paper we formulate and prove some xed and common xed pointTheorems for self-mappings dened on complete lower Transversal functionalprobabilistic spaces.
متن کاملA RELATED FIXED POINT THEOREM IN n FUZZY METRIC SPACES
We prove a related fixed point theorem for n mappings which arenot necessarily continuous in n fuzzy metric spaces using an implicit relationone of them is a sequentially compact fuzzy metric space which generalizeresults of Aliouche, et al. [2], Rao et al. [14] and [15].
متن کاملA common fixed point theorem on ordered metric spaces
A common fixed point result for weakly increasing mappings satisfying generalized contractive type of Zhang in ordered metric spaces are derived.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
international journal of nonlinear analysis and applicationsناشر: semnan university
ISSN
دوره 7
شماره 1 2015
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023